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NATTONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1625

THEORETICAL STABILITY ANALYSIS OF SKID-ROCKER LANDINGS
OF SPACE VEHICLES

By Robert W. Fralich and Edwin T. Kruszewski

SUMMARY
J 9530

The governing equations for an arbitrary rigid body sliding on a landing
surface are used to derive a stability criterion which relates the critical
values of initial velocities to the coefficient of friction, center-of-gravity
location, and initial angle of contact. A numerical application of the sta-
bility criterion is made for a vehicle used in an experimental investigation.

INTRODUCTION

A critical problem area in the design of a space vehicle is the landing
system. As conventional landing gears would be quite heavy, new methods for
absorbing landing impacts have to be devised. One technique that contains
little weight chargeable to the landing system is the one referred to as the
skid-rocker landing system. (See, for example, refs. 1 and 2.) In this sys-
tem the vehicle is permitted to slide on its curved lower surface, and the
friction between this surface and the landing surface is relied on to stop the
vehicle eventually.

An application of this landing concept is discussed in reference 1. The
skid-rocker landing characteristics of two proposed space vehicles with dif-
ferent undersurfaces were evaluated experimentally through the use of dynamic-
model testing techniques. The results of this investigation showed that upon
initial contact with the landing surface, the friction force at the contact
point could couple with the inertia forces in such a way as to cause the vehi-
cle to tumble. As such an instability could preclude the use of a specific
configuration, the stability characteristics of a landing vehicle become an
important design consideration.

It would appear to be unrealistic to consider determining experimentally
the stability characteristics of all competing vehicle shapes since the number
of such vehicles is great and each vehicle should be optimized with respect to
variations in the shape of the sliding surface and its weight distribution.
Hence some analytical method of determining the stability of sliding bodies is
needed. The presentation of such an analysis is the purpose of this paper.



This paper is divided into two parts. In the first part the governing
equations for an arbitrary rigid body sliding on a surface are presented, along
with the initial conditions both before and after contact. These nonlinear dif-
ferential equations are solved exactly to obtain closed-form expressions for the
angular position in terms of the initial conditions. These expressions in turn
are used to derive the stability criterion. The second portion of the paper
consists of numerical results obtained by the application of the derived sta-
bility criterion to one of the vehicles used in the experimental investigation
discussed in reference 1. Numerical results showing the influence of coeffi-
cient of friction, sinking speed, and center-of-gravity location on the stability
of the vehicle are discussed. 1In addition, comparisons between theory and
experiment are presented.

SYMBOLS

b perpendicular distance from body reference line to center of gravity
(fig. 1)

b = b/D

c distance from base of body reference line to center of gravity,
measured parallel to body reference line (fig. 1)

¢ =¢c/D

D base diameter of vehicle (fig. 1)

d horizontal distance from contact point to center of gravity (fig. 1)

F friction force

g acceleration due to gravity

h vertical distance from contact point to center of gravity (fig. 1)

hy value of h at initial contact

I polar mass moment of inertis

N normal force

P,Q functions of & defined in equations (10) and (11)

t time

Vi horizontal velocity

Vy vertical velocity (positive downward)



Vg rotational velocity

W weight of vehicle

X coordinate of center of gravity, measured parallel to landing surface
Xo value of x at initial contact

Z,E coordinates of undersurface

@, dummy variables

3] attitude of vehicle (angle between body reference line and the

perpendicular at the point of contact, fig. 1)

01, angular limit of stability

8o initial-contact angle

u friction coefficient

Q = w®

w angular velocity, )

Wo value of @ at initial contact

W, L, critical value of ® at initial contact

Dots on symbols denote differentiation with respect to t; primes denote
differentiation with respect to 8.

ANALYSTS

Description of Problem

The problem to be considered is that of the motion of a rigid body sliding
on a landing surface in such a way that continuous contact is maintained between
the body and the landing surface. Only bodies having sliding surfaces with no
reverse curvature are considered; thus only one point is in contact with the
landing surface at any time. The body is assumed to have no roll or yaw upon
contact, so that all forces including the inertia forces are coplanar.

A typical cross section through the center of gravity of such a body is
shown in figure 1. The position of the body at any time t can be given by the
coordinates x and 6, where x 1is the coordinate of the center of gravity
parallel to the landing surface and 6 1is the angle between some reference line
in the body and the perpendicular at the point of contact. The position of the



center of gravity with reference to the point of contact is given by h, the ver-
tical distance above the surface (positive up), and d, the horizontal distance
from the contact point (positive aft). Note that for a given shape of undersur-
face both h and d are known functions of 6 only. The location of the center
of gravity with reference to the base of the body reference line is given by the
distances b and c, measured perpendicular and parallel to the body reference
line respectively. The quantities b, ¢, d, h, and 6 are shown in the posi-
tive sense in figure 1. Note that the contact angle 6 is the negative of the
conventional angle of attack in aerodynamics.

Body reference line

—» Direction of motion

Londing

surface \

T
»
-
o

Figure 1l.- Body with force system.

The forces acting on the body consist of the normal force N, the friction
or drag force F, and the weight of the body W. All forces are positive in the
directions shown in figure 1.
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Governing Equations

Application of Newton's laws of motion results in the following equations:

F = -gse (1)
Fh - N = I8 (2)
_ _ W..
N - W= 2h (3)

where g is the acceleration due to gravity and I is the mass moment of
inertia about the axis through the center of gravity and perpendicular to the
plane of motion. The dots over the symbols refer to differentiation with respect
to time +t.

The drag force F is related to the normal force by the equation
F = uN (L)

where p is the coefficient of friction, which is assumed to be constant. Note
that since h is a function of 8 alone, and 6 1is a function of &, the
vertical velocity and acceleration of the center of gravity are given by

h=nh'6 (5)
and
h =h"é2 + h'8 (6)

where the primes denote differentiation with respect to 6.

Angular Motion of Vehicle

Solution of equation (2) after substitution of equation (%) results in an
expression for the normal force in terms of 9:

T (7)

d - ¢h

With this expression for N and equation (6), equation (3) can be written as
follows:



I W—h)e s Wnge oy (8)
d -puh 8 g

Since the quantities d and h are functions of 6 and the quantities I,
W, u, and g are constants, equation (8) constitutes the sole governing equa-~
tion for 6. The solution of this equation gives the orientation of the body at
any time. Note that equation (1), which involves the acceleration in the hori-
zontal direction, does not enter into the derivation of equation (8). Hence the
angular motions of the vehicle are entirely uncoupled from the horizontal motion.
The horizontal velocity, however, must at all times be high enough to insure that
the resultant velocity of the contact point is positive so that the friction
force does not change direction.

Before proceeding with the solution of equation (8), it is convenient to
rewrite the equation as

28 + P82 = Q (9)

where both P and Q are functions of 6 defined by

W "
2
P = g (10)
I, Wy
d - ph g
Q= - M (11)
——l——-+ Wy
d -uh "8

Although 6, the angular coordinate, is necessary in obtaining the orienta-
tlon of the body, a more important variable for the stability problem is the
angular velocity o where

w (12)

De
]

§=d = oo (13)
With equations (12) and (13), equation (9) can be written in terms of w:

2wm’ + Pl = Q (14)

This nonlinear equation (eq. (14)) can be reduced to a linear differential equa-
tion by the transformation



Q = af (15)
so that

Q' = 2ow' (16)

Substitution of equations (15) and (16) into equation (14) results in the
following linear differential equation in :

Q' + PO =Q (17)

P(a)da

With the use of the integrating factor e the solution to equa-
tion (17) can be written as

Qle Qa)e da

S a
Jg Pla)da 5 Jg P(n)dn
- (o) = L/q
0

or, in terms of w,

foeP(a) da J;QP(n)dn

8
wle - »2(0) =L/1 Qla)e da (18)
0

The value of w2(0) is obtained by evaluating equation (18) for the initial

conditions at t = O; that is, for 6 =6, and w(8,) = wy:

a

%
Jﬁ P(a)da 8, P(n)dn
o e o
0

a2(0) = wye da (19)

With the use of equation (19), equation (18) can be solved for o<:

fe feo e
2. e— 5 P(a)da 2o P(n)dn +fe ‘/(; P(n)dn

o Q(a)e da (20)
8o

Equation (20) can be used to obtain the value of the angular velocity w
for any value of 6 in terms of known initial values of 65 and w,. The
angular acceleration can be obtained by differentiating eguation (20) with
respect to 6 and making use of equation (13). Thus



Q(a)e

1jgep(n)dn , JC?OP(n)dn +k/pe JQQP(n)dn

da | + %Q(e) (21)
or

6 =-%Pw2 + g (22)

Equation (22) could also have been obtained directly from equation (9) by noting
the relationship in equation (12).

Stability Criterion

Upon initial contact of the vehicle with the landing surface, friction force
and normal force are generated at the contact point. These forces couple with
the vertical inertia forces to create angular accelerations of the vehicle. If
the initial conditions and geometry of the vehicle are such that these accelera-
tions are large enough, the vehicle will topple over. If these forces are not
large enough, the vehicle will reach a maximum angle of tip and then oscillate
gbout some mean position until the friction forces bring it to a halt.

From this description of the vehicle motion it can be seen that for a
vehicle to be stable two conditions must be met. First, the vehicle must oscil-

late between two extreme values of 8; consequently, there must be two values of
® at which the angular velocity vanishes:

é(6E+) = w(9E+) =0 (23a)

5 (95-)

Second, the angular acceleration at these points must be such as to cause the
vehicle to return to the mean position; that is,

(2%b)

Il
=
T~
[¢>]
=
N
il
@)

§(ogs) <O (2ha)
8(eg.) >0 (24p)

In these expressions 6y 1is the value of the extreme on the positive side of
the mean position and Op_ the value of the extreme on the negative side. The
angular limit of stability 07, is obtained when at one of these extremes the

angular acceleration attains a value of zero. Thus 81 1is given by



8(e1) = w(or) = © (25a)
§(er) = 0 (25v)

For each vehicle considered, an investigation must be made of the accelerations
at the extreme angular positions in order to determine which extreme yields the

1imit of stability.

Equation (25a), upon substitution from equation (20), yields

oL, 8o a
- | P(n)an - B(dn g P(n)dr
e % W, 1 + e © Qla)e 0 da| =0
o, L 0 =

0

from which the critical initial angular velocity by, 1, can be determined. Since

oL
1/‘ P(n)an
9

e O # o)

the equation for ®o, L becomes

8 a

5 1]2 “P(n)an e, j; P(n)dn

@y 1, = € Q(a)e da (26)
%

In addition, as 67 must satisfy equations (25a) and (25b) simultaneously
(see eq. (22)),

Qo) = 0 (27)

From the definition of Q 1in equation (11) it can be seen that equation (27) is
satisfied only if either

or

d(GL) _— h(eL) -0 (28)
The former condition is impossible when it is noted that

h' =4 (29)



Consequently the latter (eq. (28)) must be one of the governing stability
requirements.

Note that when d and h are related as in equation (28), the resulting
force at the point of contact intersects the center of gravity of the body. For
most practical shapes of undersurfaces used as skid rockers there are three solu-
tions to equation (28) (that is, three positions at which eq. (28) is satisfied).
The intermediate solution is associated with a position that is always stable
while the extreme values are the possible limits of stability.

The attitude of a given vehicle at the limit of stability is obtained from
equation (28) and is a function of the coefficient of friction and the shape of
the body. Once this limiting angle is known, the critical initial angular
velocity wo,L is found as a function of initial contact angle 8, from equa-
tion (26). The integrands appearing in this equation, however, are relatively
complex functions of the shape in terms of h, h', and h" and consequently
must be integrated numerically.

Initial Conditions

The initial conditions to be used in equation (26) are, of course, the con-
ditions just after contact is made with the landing surface. In many instances,
however, the values of the velocities which are known are those just prior to
contact. These values are related to the initial conditions (just after contact)
through impulse momentum equations:

At
_“L/ﬁ N dt = g(io - Vh) (30)

0

=

szm N(uh - d)dt = IQDO - Ve) (31)

0

A Wi
L/1 (¥ - W)at g(ho + vv) (32)

0

where Vy, V,, and Vg are, respectively, the horizontal, vertical, and rota-
tional velocities Just prior to contact, and io, ﬁo, and @, are the corre-

sponding initial velocities (Jjust after contact). The integrals on the left of
equations (30) to (32) represent the impulse existing between the landing sur-
face and the vehicle. Their actual value depends on the resilient properties of
both the vehicle and the landing surfaces. However, the time interval At,
representing the duration of the impulse, is assumed to be small enocugh so that

10



At Ot
L/n N(uh - d)dt = (ph - d)]n N dt (32a)

0 0

At At
Wdt = W dt = 0 (3%b)
0 0

The initial vertical and rotational velocities are related through equa-
tion (5):

hy = h'(eo)mo (34)

With the use of equations (33%b) and (34), equation (32) reduces to

At
/(; N dt = gE'(eo)% + va (35)

The initial angular velocity mg, in terms of the velocities just prior to
contact, is obtained from equation (51) after making use of equations (3%3%a) and

(35):
) —l:d(eo) - u h(eo)j] ng + IV,
o T+ [é(eo) - h(goilghu(eo> (36)

A similar expression for X, is obtained with the use of equations (30), (35),

and (36):

[4%)

%o = Vp - kI Yy + 17 {8)Ve (37)

I+ [@(eo) _— h(eoﬂ gh'(eo)

Although the values of the impulse quantities depend on the resilient prop-
erties of the contacting surfaces, the initial velocities just after contact can
be obtained in terms of the velocities just prior to contact without knowing
these resilient properties.

Solution Neglecting Friction

As was previously stated, the integrals (see eq. (26)) that must be evalu-
ated to obtain the critical initial angular velocity are integrable only for
vehicles with specific simplified sliding surfaces. If the effects of friction
are neglected, however, the quantities inside the integral signs become exact
differentials; consequently, the integrals can be evaluated exactly for the

11



general case. As the stability criterion is obtained in a simple closed-form
expression, the solution will be presented herein.

As seen from equation (28), the attitude at which instability occurs when
friction is neglected, 61, is the position at which the center of gravity is
directly above the point of contact - that is, the attitude for which 4, and
consequently h', is zero. With the attitude of the vehicle at the point of
instability known, the critical initial angular velocity at which the instability
occurs, ®, 1, is obtained from equation (26).

With the assumption that the friction coefficient p 1is zero, the expres-
sions for P and Q (egs. (10) and (11)) reduce to

P = ﬂhL (58)
Ig + W(n')e
and
Q= —-2veh' (29)
Ig + w(n')e

Note that P 1s now an exact derivative; therefore

L/: P dn = loge %E{g + W(n")2] (40)

where
Ry = Ig + W[n'(0)]° (41)

Also
efo ren -ﬁlg[:Ig + W(n')?] (42)

By the use of equations (39) and (42), equation (26) can be integrated to
yield

o 2 - avg[n(61,) - n(o,)]
oL~ Ig + wEn'(eo)]e (h3)

12



Consequently, all values of initial velocities before contact that result in
initial angular velocities g (as calculated by eq. (36) with p = 0) such that

w02 > wo,LE result in instability.

NUMERICAL RESULTS

The purpose of this section is twofold: first, to illustrate the applica-
tion of the stability criterion in obtaining a stability boundary for a typical
sliding body, and second, to show the quantitative effects of various parameters
on the stability limit of a typical vehicle.

Description of Vehicle

The cross section of the vehlcle whose stability is to be investigated in
this section is shown in figure 2. The shape was taken to be the same as that of

- Line of symmetry

6.36

Circle

¢

Figure 2.- Cross section of contiguration C of reference 1.

configuration C used in the experimental investigation discussed in reference 1.
The undersurface is symmetrical and consists of hyperbolic and circular segments
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having a common tangent at their junctions. The equations for the curves and the
expressions for h in the three segments of the undersurface shown in figure 2
are as follows:

(o] (o]
For the hyperbola <-22% <9< 22% >:

“1.784% + Jo.2505§2 + 1.7842

o3
]

=2
i

(c + 1.784)cos 8 - b sin 6 - l.78hJcos26 - 4.338% sinp

O
For the circle at 6 > 22% :

N
1

= 1.977 - \/(0-5555)2 - (& - 6.032)2

(¢ - 1.977)cos 8 - (b - 6.032)sin 8 + 0.3333

g
]

o)
For the circle at 8 < - 22% :

o]
I

= 1.977 - J(o.5355)2 - (6 + 6.0%2)°

(c - 1.977)cos 8 - (b + 6.032)sin 8 + 0.3333

jng
1t

The value of the ratio of the mass to the mass moment of inertia is

X 0.094k per sq ft
Ig

Application of Stability Criterion

The first step in obtaining a stability boundary is to calculate the
angular limit of stability 67 from equation (28) for the assumed value of the
coefficient of friction. As the vehicle in figure 2 is symmetrical, it is con-
venient to use the line of symmetry as the angular reference line. TFor this
symmetrical body, with the center-of-gravity positions considered, the highest
of the three values of 67 from equation (28) yields the limit of stability.
Values of 81, for various values of the coefficient of friction are shown in
figure 3. With the value of 87 known, Wo, 1, (the critical initial angular
velocity after contact for which instability or tumbling occurs) is calculated

1k



for a given contact angle 6, from equa-
tion (26). The integrals appearing in
equation (26) are evaluated numerically
by use of trapezoidal integration with
2/3° intervals of 8.

Any combination of sinking velocity
V, and of pitching velocity VG that

results in a value of w02 (as calculated

from eq. (36)) greater than W, L2 leads
2

to instability. As the experimental tech- 20
nigque used in reference 1 does not permit
the vehicle to have a pitching velocity, -
Vg 1s assumed to be zero in the numerical

analysis used herein. Consequently, the 0 2 4 6 8

value of W, 1in the following discussion #

will be a function Only of the Sinking Figure 3.- Variation of angular limit of

velocity V, and the attitude at impact stability 6p with friction coeffi-
cient u.

as given by 6,.

Discussion of Results

Stability boundaries were calculated for the vehicle of figure 2 for a
range of values of sinking velocity, coefficient of friction, center-of-gravity
location, and contact attitude. The results of these calculations are shown in
figures 4 to 7.

In figure 4 the critical stability curve is shown as a function of sinking
velocity and contact angle for a vehicle with given center-of-gravity location
and coefficient of friction. For all combinations of contact angle and velocity
that fall below this curve the vehicle is stable. For values that fall above
this curve the vehicle tumbles. The distance between the two curves for a given
velocity represents the range of contact angles for which a stable landing is
possible, and is referred to as the region of safe touchdown.

The amount of attitude control necessary for the landing vehicle decreases
with an increase in the size of this region of safe touchdown. For example, at
a sinking velocity of 40 feet per second, the controls must be sufficiently
accurate to land the vehicle within a range of 10° of contact angle. At a veloc-
ity of 20 feet per second this range increases to 20° and thus less control is
necessary. For velocities below 20 feet per second there is a sudden increase in
the size of the safe touchdown region.

Note that for sinking velocities greater than 20 feet per second some kind
of attitude control is always necessary. As can be seen in figure 4, for veloc-
ities above 20 feet per second the only stable contact angles are positive; con-
sequently the landing of the vehicle must be controlled to assure such an angle.
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Even at lower sinking velocities the
desirability of some kind of attitude
control is indicated by the fact that the
range of positive safe contact angles is
considerably larger than the range of neg-
ative angles.

The influence of the coefficient of
friction and the height of the center-of-
gravity location (c in fig. 2) on the
region of safe touchdown is shown in fig-
ures 5 and 6, respectively. In figure 5
the critical stability curve of the
vehicle is shown as a function of the
contact angle and coefficient of friction
for a sinking velocity of 10 feet per sec-
ond and the same center-of-gravity loca-
tion used to obtain the results of fig-
ure 4. In figure 6 the stability curve
is shown as a function of the contact
angle and a dimensionless center-of-
gravity height T = c/D, for the sinking
velocity of 10 feet per second (same as
used in fig. 5) and coefficient of fric-
tion of 0.40 (same as in fig. 4).

Unstable

Unstable

ol

Stoble

-80 -40 o] 40 80
85 ,deg

Figure 5.- Influence of friction
coefficient u on stability.
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100 -

80

0

® ol ol
» O

(s

v,, ft/sec -
Unstable Unstable
401
Stoble
20}
o i 1 I | 1 1
-20 20 40
6y, 0e9
Figure 4.- Influence of sinking
velocity V, on stability.
.8 —
b0
| e .40
V, =10 f1/sec
6
.4 =
Unstable Unstable
2
Stable
o | | 1 | L 1
-80 -40 [0} 40
8., deg

Figure 6.- Influence of center-of-gravity

height

<)

on stability.



From figures 5 and 6 it can be seen that, the region of safe touchdown
becomes larger with a decrease in both the coefficient of friction and the height
of the center of gravity. Furthermore, in both figures, for reasonable values of
iw and T the range of positive safe contact angles is considerably larger than
the range of negative angles. This fact supports the desirability of attitude
control.

The influence of offsetting the center of gravity from the line of symmetry
is shown in figure 7. 1In this figure the critical stability curve is given as a
function of the contact angle and a dimensionless offset distance b = b/D. The
values of T and p are the same as in figure 4 and Vy 1is equal to 10 feet

per second. This figure indicates that, for a sufficiently high negative offset,
the range of negative safe contact angles might be made large enough to eliminate
the necessity for attitude control. This situation, however, would require that
the location of the center of gravity with respect to the motion of the vehicle
be made a design criterion.

For completeness the comparison between theory and experiment presented in
reference 1 is shown in figure 8. 1In this figure the curves show the calculated
stability boundaries as functions of center-of-gravity height and landing atti-
tude for three values of friction coefficient and a sinking velocity of 10 feet
per second. The symbols show the results of the experimental investigation; the
open symbols represent stable landing attitudes while the closed symbols repre-
sent unstable ones. In general the agreement between theory and experiment is
good.

T .24 Computed siability boundariss
u+40 Friction coefficiont, 4t Exparimenial remtts
V, +10 1t/sec :35 Horizonlal welocity  Stobie  Model tumbied
45 | _—— k! 30 ft/ e o) ®
[0+ 80 7/ sec 0 »

ol | é //’/B\\.‘i’ S B

Unsiable Stobie Unstable 3 /
/
/

ol
g
T

28 [—

=15

-a0 -20 0 20 40 60
Figure 8.- Comparison of theoretical results

g, .deq with experimental results for configura-
tion C of reference 1 showing the influence
Figure 7.- Influence of center-of-gravity of center-of-gravity height T on stabil-

offset b on stability. ity. Vertical velocity V, = 10 ft/sec;

center-of-gravity offset b = O.
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CONCLUDING REMARKS

A method of calculating a stability criterion for sliding bodies has been
developed. The method resulted from an exact solution of the nonlinear equations
of an arbitrary rigid body sliding on a surface in such a way that continuous
point contact is maintained. The range of values of initial contact angles which
result in stable motion is obtained from the solution of two equations, one of
which involves integrals that, for most cases, must be integrated numerically.

The method was used to obtain the stability boundaries of a vehicle used in
an experimental investigation. From the numerical results it was concluded that
although the region of safe touchdown could be increased by proper choice of
center-of-gravity location and sinking velocity, some attitude control for the
landing vehicle is desirable.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., Jamuary 15, 1963.
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NASA TN D-1625

National Aeronautics and Space Administration.
THEORETICAL STABILITY ANALYSIS OF SKID-
ROCKER LANDINGS OF SPACE VEHICLES.

Robert W. Fralich and Edwin T. Kruszewski. April
1963. 18p. OTS price, $0.50.

(NASA TECHNICAL NOTE D-1625)

The governing equations for an arbitrary rigid body
sliding on a landing surface are used to derive a sta-
bility criterion which relates the critical values of
initial velocities to the coefficient of friction, center-
of -gravity location, and initial angle of contact. A
numerical application of the stability criterion is
made for a vehicle used in an experimental
investigation.
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